skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hanada, Mitsuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$ ( a 1 , a 2 , , a n ) whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$ b 1 b 2 b n satisfies$$b_i \le i$$ b i i . The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$ R n , which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$ x -parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$ x = ( a , b , , b ) , which we refer to as$${\textbf{x}}$$ x -parking function polytopes. We explore connections between these$${\textbf{x}}$$ x -parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$ x -parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary. 
    more » « less